87 research outputs found

    Multicentury Fire and Forest Histories at 19 Sites in Utah and Eastern Nevada

    Get PDF
    Our objective is to provide site-specific fire and forest histories from Utah and eastern Nevada that can be used for land management or additional research. We systematically sampled fire scars and tree-recruitment dates across broad gradients in elevation and forest type at 13 sites in Utah and 1 in eastern Nevada to characterize spatial and temporal variation in historical fire regimes as well as forest structure and composition. We collected similar data non-systematically at five additional sites in Utah. These 19 sites include a broad range of forest types (from pinyon-juniper woodlands to spruce-fir forests) and fire regime types. In this report, we summarize local-scale spatial and temporal variation with site-specific details of historical fire regimes and forests that will be useful for local natural resource and fire management of the individual sites. For each site, we report topography, chronologies of fire and tree recruitment, and properties derived from those chronologies such as time-averaged fire regime parameters (mean fire interval and fire severity) and changes in forest composition and structure that have occurred since the late 1800s

    16th Wildland Shrub Symposium Threats to Shrubland Ecosystem Integrity 2010 May 18-20 Logan, UT

    Get PDF
    Abstract: The 29 papers in this proceedings are divided into the main organized sessions of the 16th Wildland Shrub Symposium, including the plenary session to introduce the theme of threats to shrubland ecosystem integrity, impacts of energy development and reclamation on ecosystem function, invasive plant ecology. wildlife habitats: impacts and restoration opportunities, historical perspectives in shrublands, ecosystem threats due to fire in the Mojave Desert, and modeling and monitoring of shrubland ecosystems. An overarching goal of the symposium was to make linkages between research and management

    Guidelines for Aspen Restoration in Utah with Applicability to the Intermountain West

    Get PDF
    As highly productive and biologically diverse communities, healthy quaking aspen (Populus tremuloides; hereafter aspen) forests provide a wide range of ecosystem services across western North America. Western aspen decline during the last century has been attributed to several causes and their interactions, including altered fire regimes, drought, excessive use by domestic and wild ungulates, and conifer encroachment. Today’s managers need science-based guidance to develop and implement strategies and practices to restore structure, processes, and resilience to the full range of aspen functional types across multiple spatial scales. In these guidelines, we detail a process for making step-by-step decisions about aspen restoration. The steps are: (1) assessment of aspen condition, (2) identification of problematic conditions, (3) determination of causal factors, (4) selection of appropriate response options, (5) monitoring for improvement, and (6) assessment and adaptation. We describe the need for reference areas in which the full range of natural environmental conditions and ecosystem processes associated with aspen can be observed and quantified, and provide a list of example sites for Utah. These guidelines provide a road map for decision-makers to adaptively manage aspen in a time of increasing environmental stress and in anticipation of an uncertain future

    Facilitation Differentially Affects Competitive Responses of Aspen and Subalpine Fir Through Stages of Stand Development

    Get PDF
    Spatial interactions between trees influence forest community succession. The objective of this study was to investigate how shifts in forest composition and proximity between tree species affect stand development over time in mixed forest systems. At six locations across the Fishlake National Forest, Utah, USA, in stands where facilitation has been documented previously, tree-ring samples were collected from aspen and subalpine fir trees. Basal area increment was calculated to characterize the effects of the proximity of overstory trees on multidecadal growth responses of aspen and subalpine fir in aspen-dominant and mixed aspen–conifer stands. Subalpine fir seedlings were established next to aspen (within 10 cm) when aspen was between 15 and 120 years old with a mean age of 60 years. Aspen and subalpine fir growth rates were reduced with increasing conifer abundance. Aspen trees growing next to a proximate subalpine fir tree had slower growth rates over time than aspen trees growing independently. Growth rates of subalpine fir in aspen-dominated stands were similar when growing independently or near aspen trees. However, subalpine fir in conifer-dominated stands maintained higher growth rates when growing next to an aspen tree than when growing independently. The data suggest that as stand competition increases with conifer abundance, the proximity of overstory trees increases competitive exclusion of aspen while having a beneficial growth effect on subalpine fir. These results underscore the importance of maintaining natural fire regimes in forest systems that keep competitive interactions in balance

    15th Wildland Shrub Symposium - Shrublands: Wildlands and Wildlife Habitats, 2008 June 17-19, Bozeman, MT

    Get PDF
    The 35 papers in this proceedings are divided into four sections; the first includes an introduction to the symposium theme of Shrublands as wildlands and wildlife habitat, along with keynote addresses discussing geographic affiliations of eastern Montana\u27s great Plains Flora and methodology for surveying mule deer winter range habitat use and condition. The next two sections cluster papers on wildlife habitat and ecological relationships. These sections provide a diverse sampling of topics examining the nature and impacts of intra- and inter-trophic relationships among plants and associated species of western North American shrublands. Papers in the final section present assessments of various sampling and monitoring methodologies applicable to shrublands

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Dynamics of Wind Setdown at Suez and the Eastern Nile Delta

    Get PDF
    BACKGROUND: Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. METHODOLOGY/PRINCIPAL FINDINGS: This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. CONCLUSIONS/SIGNIFICANCE: Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3-4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore

    Ecosystem resilience despite large-scale altered hydroclimatic conditions

    Full text link
    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE e: Above-ground net primary production/ evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE e in drier years that increased significantly with drought to a maximum WUE e across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE e may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands. © 2013 Macmillan Publishers Limited. All rights reserved

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    • 

    corecore